Lection 6

6). Excitons in the presence of electron gas (2h)
(bound states - trions, triplet and singlet trions, unbound states, combined exciton electron processes; manifestation of exciton electron scattering in optical spectra)
7). <u>Biexcitons</u> (1h)

EXCITONS IN 2DEG

Low electron density limit

- 1. Charged exciton-electron complexes (trions)
- 2. Singlet and triplet trion states
- **3. Modulation doped QWs**
- 4. Trions in optical spectra
- 5. Action of magnetic fields on the trions *High electron density limit*
- 6. Combined exciton cyclotron resonance
- 7. Combined trion cyclotron resonance
- 8. Combined exciton electron processes in PL spectra
- 9. Trion Zeeman splitting

From LOW density to HIGH density

LOW 2DEG DENSITY

Two electrons+one hole states

•Trions

- •Trions in magnetic fields
- •Trion excited states in magnetic fields

Charged exciton – electron complex (trion)

Negatively charged Trion X⁻ similar to ion H-

Positively charged Trion *X*⁺ *Similar to ionized molecule H*+

Singlet and Triplet trion states

 $U_{nlm} \neq 0$, if $l \neq 0$ one electron is in *1S* and the second is in *2P* state – dark triplet

Or if $n \neq 1$ one electron is in 1S, and the second is in a 2S state bright triplet

Experimental studies of trions

Modulation doped structures

2DEG density varied from $n_e = 5*10^9 \text{ cm}^{-2}$ to $9*10^{11} \text{ cm}^{-2}$

Optical processes with the trion participation

Trion binding energy as a function of the QWwidth

Trion states in magnetic fields

Singlet trion in magnetic fields

The circular polarization of the trion absorption (reflectivity line) in magnetic fields can be used to determine electron concentration by pure optical method

 X_{hh} and X_{lh} resonances appear in opposite circular polarizations

PL spectra: CdTe/CdMgTe 2D electron gas at 1.5 K at ~83 T (in 100T LP)

Singlet and Triplet in high fields

EXCITON-ELECTRON SCATTERING

(excited states of a trion in magnetic fields)

Exciton – electron scattering

The scattering leads to high energy tail of the exciton absorption line. In magnetic fields it splits into separate lines because the electron spectrum becomes discrete = excited states of trions in magnetic fields.

Combined exciton –cyclotron resonance ExCR

With increase of the electron density there is redistribution of absorption from exciton to trion and ExCRC

FIG. 3: Optical Density $\log_{10}(1/t)$ of CdTe/CdZnTe MQW sample S3 at B = 0, nominal T = 2 K, for various pump powers, showing increase of trion absorption peak and decrease and asymmetric broadening of exciton peak with increasing n_{e} .

WHAT IS THE BURSTEIN-MOSS SHIFT?

Photoluminescence

Conventional scheme of the B-M shift

Where is the exciton here?

PL as a function of the electron concentration

Absorption and emission at B=0, CdMnTe QW m1119

24

"Recreation" of the exciton and trion lines in magnetic field

